ON r-REGULAR CONVERGENCE

نویسندگان

  • PAUL A. WHITE
  • G. T. Whyburn
چکیده

In his paper On sequences and limiting sets [ l ] , 1 G. T. Whyburn introduced the notion of regular convergence. He showed that in the cases of 0 and 1 regular convergence (see definition below) that the limit of sequences of many simple topological sets is of the same type as the members of the sequence. I t is the purpose of this paper to extend some of these results to higher dimensions. The lack of simple characterizations of the higher dimension sets (such as the ^-sphere) makes the results much weaker than in the 0 and 1 dimensional cases. It is assumed throughout the paper that all sets lie in a compact metric space. All our complexes and cycles will be non-oriented, and the Vietoris cycles and chains ( F-cycles and F-chains) will have these as coordinates. The set of all points x whose distance from a set A is less than e will be denoted by U€(A). Finally we shall denote the boundary of an r-dimensional complex (or F-chain) z by z>

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological regular variation: II. The fundamental theorems

This paper investigates fundamental theorems of regular variation (Uniform Convergence, Representation, and Characterization Theorems) some of which, in the classical setting of regular variation in R, rely in an essential way on the additive semi-group of natural numbers N (e.g. de Bruijn’s Representation Theorem for regularly varying functions). Other such results include Goldie’s direct proo...

متن کامل

On $\mathbb{Z}G$-clean rings

Let $R$ be an associative ring with unity. An element $x \in R$ is called $\mathbb{Z}G$-clean if $x=e+r$, where $e$ is an idempotent and $r$ is a $\mathbb{Z}G$-regular element in $R$. A ring $R$ is called $\mathbb{Z}G$-clean if every element of $R$ is $\mathbb{Z}G$-clean. In this paper, we show that in an abelian $\mathbb{Z}G$-regular ring $R$, the $Nil(R)$ is a two-sided ideal of $R$ and $\fra...

متن کامل

On finitely generated modules whose first nonzero Fitting ideals are regular

A finitely generated $R$-module is said to be a module of type ($F_r$) if its $(r-1)$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of  $R^n$ which is generated by columns of  a matrix $A=(a_{ij})$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite) index set.  ...

متن کامل

Multi - Splittings of Matrices and Parallel Solution of Linear Systems * Dianne

We present two classes of matrix splittings and give applications to the parallel iterative solution of systems of linear equations. These splittings generalize regular splittings and P-regular splittings, resulting in algorithms which can be implemented efficiently on parallel computing systems. Convergence is established, rate of convergence is discussed, and numerical examples are given.

متن کامل

On convergence of sample and population Hilbertian functional principal components

In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007